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Abstract

This paper reports the geometric (constructal) optimization of T-shaped ®n assemblies, where the objective is to
maximize the global thermal conductance of the assembly, subject to total volume and ®n-material constraints.
Assemblies of plate ®ns and cylindrical ®ns are considered. It is shown that every geometric feature of the assembly

is delivered by the optimization principle and the constraints. These optimal features are reported in dimensionless
terms for this entire class of ®n assemblies. Corresponding results are developed for more evolved versions of the T-
shaped assembly, namely, the tau-shaped assembly where the free ends of the thinner ®ns are bent, the tau-shaped
assembly that is narrower than the space allocated to it, and the umbrella-shaped construct containing cylindrical

®ns. The results show that some of the optimized geometrical features are relatively robust, i.e., insensitive to
changes in some of the design parameters. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Constructal theory is the thought that the geometric
form visible in natural ¯ow systems is generated by
(i.e., it can be deduced from) a single principle that

holds the rank of law [1]. The constructal law was ®rst
stated for open (or ¯ow) systems: ``For a ®nite-size sys-
tem to persist in time (to live), it must evolve in such a
way that it provides easier access to the imposed cur-

rents that ¯ow through it''. This statement has two
parts. First, it recognizes the natural tendency of
imposed currents to construct shapes, i.e., paths of op-

timal access through constrained open systems. The
second part accounts for the changes (i.e., improve-
ments) in these paths, which occur in an identi®able

direction that is aligned with time itself.
The formulation of the constructal law refers to an

open system with imposed through ¯ow. If the system

is isolated and initially in a state of internal nonequi-
librium, it will create optimal geometric paths for its
internal currents. The constructal law then is the state-

ment that the isolated system selects and optimizes its
internal structure (the ¯ow paths) to maximize its
speed of approach to equilibrium (uniformity, no ¯ow)

[2]. The constructal law was conceived as a purely
theoretical way of accounting for the billions and bil-
lions of natural patterns that have been recognized
empirically as ``self-organization'' and ``self-optimiz-

ation'' in systems far from equilibrium.
The constructal optimization of paths for internal

currents was ®rst proposed in the context of pure

heat conduction [1], with application to the cooling
of heat generating electronics in the limit of
decreasing dimensions. The constructal method

shows us how to minimize geometrically the thermal
resistance between a volume and one point, when
the total system volume and the volume fraction
occupied by high-conductivity ``channels'' are con-

strained. The application of this heat transfer
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enhancement method to systems with pure conduc-

tion showed that the optimized architecture has a

tree-shaped skeleton formed by high-conductivity

material. The rest of the material ®lls the interstices,

and generates heat at every point of the given

volume. The tree of high-conductivity channels cap-

tures the heat current generated by the entire

volume, and leads it out of the system through the

root point of the tree structure. The interstices of

the tree channels are equally important: in every

optimized volume element there is a perfect balance

between the resistance through the low-conductivity

Nomenclature

a, b dimensionless parameters, Eqs. (5) and (20)
A area [m2]
f, f� fractions, Eq. (16)

h heat transfer coe�cient [W mÿ2 Kÿ1]
k ®n thermal conductivity [W mÿ1 Kÿ1]
L length [m]

m ®n parameter, Eq. (6)
q heat current [W]
t thickness [m]

T temperature [K]
V volume [m3]
W width [m]
y fraction, Eq. (17)

Greek symbols
e small dimensionless number
y dimensionless junction temperature, Eq. (9)

f1 volume fraction of ®n material

Subscripts

f ®n material
m maximized once
mm maximized twice

Superscript
( ~) dimensionless variables, Eqs. (4), (10) and (21)

Fig. 1. T-shaped assembly of plate ®ns.
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and high-conductivity materials, i.e., a perfect bal-
ance between the two ``¯ow regimes''.

The constructal tree is determined completely from
one principle: the minimization of global resistance
subject to size constraints. Constructal trees have been

determined for heat conduction in two dimensions [1]
and for ¯uid ¯ow through a heterogeneous porous
medium [3]. The wide applicability of this deterministic

principle to the physics of naturally shaped (organized,
optimized) ¯ow systems was discussed in a recent
review [4].

In this paper we extend the constructal method to a
class of systems that transfer heat (between a volume
and one point) through a combination of conduction
and convection. The system is the assembly of rigidly

connected ®ns that ®lls a given space, and has a ®xed
amount of ®n material. The heat current (input or out-
put) touches every point of the volume by convection,

because the volume is bathed by a steady stream of
¯uid. This current continues by conduction into the
solid links of the ®n assembly, and makes contact with

the root of the assembly.
Individual ®ns and assemblies of ®ns have long been

recognized as e�ective means to augment heat transfer.

The literature on this subject is sizeable, as shown by
the most current reviews [5,6]. The new aspect that is
contributed by the constructal method is the complete
geometric optimization of the assembly of ®ns when

the total volume inhabited by the assembly is ®xed. In
order to illustrate this aspect in the most transparent
terms, we apply the constructal method to some of the

simplest assembly types that have been recognized in
practice [5±10].

2. Unidirectional conduction model

Consider the T-shaped assembly of ®ns sketched in
Fig. 1. Two ``elemental'' ®ns of thickness t0 and length
L0 serve as tributaries to a stem of thickness t1 and

length L1. The con®guration is two-dimensional, with
the third dimension (W ) su�ciently long in compari-
son with L0 and L1. The heat transfer coe�cient h is

uniform over all the exposed surfaces. Speci®ed are the
temperatures of the root (T1) and the ¯uid (T1). The
temperature at the T junction (T0) is one of the
unknowns, and varies with the geometry of the assem-

bly.
The objective of the following analysis is to deter-

mine the optimal geometry �L1=L0, t1=t0� that is

characterized by the maximum global thermal conduc-
tance q1=�T1 ÿ T1�, where q1 is the heat current
through the root section. As in the constructal optimiz-

ation of conduction trees [1], the present optimization
is subjected to two constraints, namely, the total
volume (i.e., frontal area) constraint,

A � 2L0L1 �constant� �1�

and the ®n-material volume constraint,

Af � 2L0t0 � t1L1 �constant� �2�

The latter can be expressed as the ®n volume fraction
f1 � Af=A, which is a constant considerably smaller
than 1.

The analysis that delivers the global conductance as
a function of the assembly geometry consists of
accounting for conduction along the L0 and L1 ®ns,
and invoking the continuity of temperature and heat

current at the T junction. For each ®n we use the uni-
directional conduction model, the validity of which is
tested later in Eqs. (13) and (14).

For the two elemental ®ns we used the classical
assumptions [5,6,11] and the solution for a ®n with
non-negligible heat transfer through the tip,

q0
kW�T0 ÿ T1�

� a~t 1=20

sinh�a ~L0 ~tÿ1=20 � � �a=2� ~t 1=20 cosh�a ~L0 ~tÿ1=20 �
cosh�a ~L0 ~tÿ1=20 � � �a=2� ~t 1=20 sinh�a ~L0 ~tÿ1=20 �

�3�
where

� ~L0, ~t0� � �L0, t0�
A1=2

�4�

a �
�
2hA1=2

k

�1=2

�5�

Eq. (3) shows the emergence of the dimensionless par-

ameters �a, ~L0, ~t0� which in¯uence the dimensionless el-
emental conductance q0=�kW�T0 ÿ T1��: Note the use
of A 1/2 as length scale in the nondimensionalization of

the linear dimensions.
The temperature distribution along the stem T(x ),

from the root (x=0) to the junction (x=L1), is

T�x� ÿ T1 � �T1 ÿ T1� cosh�m1x� �
�

T0 ÿ T1
sinh�m1L1�

ÿ �T1 ÿ T1� cosh�m1L1�
sinh�m1L1�

�
sinh�m1x� �6�

The ®n parameter m1 � �2h=kt1�1=2 can be expressed as
m1L1 � a ~L1=~t

1=2
1 : Next, we use T(x ) in the equation

for the continuity of heat current at the T0 junction.

ÿkt1W
�
@T

@x

�
x�L1

� 2q0 �7�

which can be arranged in the following dimensionless
form:
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1ÿ y cosh�a ~L1=~t
1=2
1 �

� 2

�
~t0
~t1

�1=2

y tanh�a ~L0=~t
1=2
0 � sinh�a ~L1 ~t

1=2
1 � �8�

Eq. (8) establishes the dimensionless junction tempera-
ture as a function of the ®ve dimensionless parameters
of the ®n assembly,

y � T0 ÿ T1
T1 ÿ T1

� function�a, ~L0, ~t0, ~L1, ~t1� �9�

Finally, the global thermal conductance is obtained by
using Eq. (6) in evaluating the heat current through
the root, q1 � ÿkt1W�@T=@x�x�0: The result can be

expressed as a dimensionless global conductance,

~q1 �
q1

kW�T1 ÿ T1� � a~t 1=21

cosh�a ~L1=~t 1=21 � ÿ y

sinh�a ~L1=~t 1=21 �
� �10�

Fig. 2. The double maximization of the overall thermal conductance of the T-shaped construct of Fig. 1.
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for which y is provided by Eq. (9). The conductance qÄ1
emerges as a function of a, ~L0, ~t0, ~L1 and ~t1: only three
of these parameters are free to vary, because of the

volume and ®n material constraints (1) and (2), which
now read

2 ~L0
~L1 � 1 �11�

f1 � 2 ~L0 ~t0 � ~L1 ~t1 �12�

In the optimization runs we used t1/t0 and L1/L0 as
degrees of freedom, while assigning discrete values to
the parameter a. Fig. 2 shows that qÄ1 can be maxi-
mized with respect to both L1/L0 and t1/t0, i.e., with

respect to the external and internal shapes of the ®n
assembly. In the ®rst frame of the ®gure the overall
conductance is maximized with respect to L1/L0 by

holding t1/t0 constant. The result is the maximized con-
ductance qÄ1,m shown in the second frame. This oper-
ation is repeated many times for other values of t1/t0,

until qÄ1,m can be maximized for the second time. The
end result of this double maximization is the conduc-
tance qÄ1,mm shown in the third frame: here we also

show that we repeated the double maximization pro-
cedure for an entire range of a and f1 values, which
are consistent with practical values. For example, in

forced convection to gas ¯ow the order of magnitude
of h is 102 W/m2 K, while the thermal conductivities of
aluminum and copper are of order 102 W/m K. Substi-
tuting these values and A 1/2 0 1 cm in Eq. (5) we

obtain a010ÿ1.

3. Optimal T-shaped geometry

Results for the optimal geometry of the T-shaped
construct can be generated by using the procedure of

Table 1

Numerical examples of optimized T-shaped ®n assemblies

(f1=0.086, a=0.185)

LÄ0 LÄ1 tÄ0 tÄ1 qÄ1

Constructal 1.33 0.376 0.0194 0.091 0.0516

Kraus [5] 0.71 0.689 0.0191 0.086 0.040

Fig. 3. The optimized geometry of the T-shaped construct of Fig. 1.
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Fig. 2 to cover a wider range (a, f1). In this extensive

numerical work it is necessary to keep in mind the
range of validity of the unidirectional conduction
model on which the analysis is based. The model is

valid when the following Biot number criterion is satis-
®ed [12]:�
ht0, 1
k

�1=2

� 1 �13�

According to this criterion, the two dimensionless

thicknesses (tÄ0, tÄ1) must be small enough so that

a

�
~t0, 1
2

�1=2

< e �14�

where e is a number smaller than 1. The numerical
results described in this paper satisfy the condition (14)

with e=0.1.
The bottom frame of Fig. 2 shows that the maxi-

mized conductance of the T-shaped construct increases

as both f1 and a increase. In the range 0.01 R f1 R
0.2 and 0.1 R a R 1 these results are correlated within
12% by the power law

~q1, mm � 0:894a1:08f0:407
1 �15�

Fig. 3 shows the corresponding results for the opti-

mized geometry of the construct. The internal aspect
ratio �t1=t0�opt increases monotonically as a increases
and as f1 decreases; however, these e�ects are weak

when a becomes small and f1 becomes large. The
external aspect ratio �L1=L0�opt has a more interesting
behavior when f1 is ®xed: this ratio exhibits a
maximum with respect to parameter a. Note that

when �L1=L0�opt is known, the individual lengths
� ~L1, opt, ~L0, opt� follow immediately from the volume
constraint (11). Similarly, when the ratio �t1=t0�opt is

known, the individual thicknesses � ~t1, opt ~t0, opt� can be
calculated easily from the material constraint (12).
A numerical example of the optimized structure pro-

duced by this method is presented in Table 1 and the
lower part of Fig. 4. This example corresponds to a
case optimized in an earlier study by Kraus [5] (Fig. 4,
top), who used k = 200 W/m K, h = 60 W/m2 K and

®n lengths and thicknesses that required a total frontal
area A = 32.4 cm2 and solid volume fraction
f1=0.086. In this case a=0.185, cf. Eq. (5). The two

designs of Fig. 4 satisfy the unidirectional conduction

Fig. 4. Examples of optimized T-shaped ®n assemblies

(f1=0.086, a=0.185).

Fig. 5. Tau-shaped assembly of plate ®ns.
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criterion (14); in both cases the left side of Eq. (14) has

the values a�t0=2�1=2 � 0:018 and a�~t1=2�1=2 � 0:04:
Table 1 shows that the constructal-optimized thick-

nesses are nearly the same as in Kraus' design, and

that the geometric di�erences result from the ®n

lengths. In the constructal case the elemental ®ns (L0)

are considerably longer. The main di�erence in the

constructal design is the 29% increase in the global

thermal conductance of the T-shaped assembly.

4. Tau-shaped ®n assemblies

The slenderness of the elemental ®ns in the construc-
tal design (Fig. 4) may turn into a disadvantage if the

Fig. 6. The optimized geometry and global performance of tau-shaped ®n assemblies (f1=0.05).
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design is limited by ¯ow induced vibrations. One way
of extending the applicability of the constructal
approach is to bend the ends of the L0 ®ns, as shown

in Fig. 5. This technique was also described by Kraus
[5]. It is particularly important in the constructal de-
sign because the bending of the elemental ends allows

the structure to ``®ll better'' its allotted volume. Filling
volumes in an optimal way (with objective, or purpose,
relative to the use of volume-to-point ¯ows) is the
essence of the constructal method.

The bending of the L0 ®ns introduces a new dimen-
sionless parameter: the fraction f, such that the turned
end is of length (1ÿf )L0, and the portion that is in

thermal contact with the stem is of length fL0. The
frontal area constraint (1) is replaced by A � 2fL0L1,
which means that the dimensionless size constraint is

now

2f ~L0
~L1 � 1 �16�

The rest of the mathematical apparatus is the same as

in Section 3. The new parameter f can take values in
the range f� < fR1, where f = 1 represents the T-
shaped assembly documented in Section 3, and f� �
1ÿ L1=L0 represents the extreme where the bent end
would be as long as the stem, �1ÿ f �L0 � L1: We con-
tinue to assume that in each case the ®n thickness is

considerably smaller than the ®n length, and that the
unidirectional conduction model [13,14] applies.
The important question for the tau-shaped design is

how the f parameter in¯uences the optimal geometry

and performance of the assembly. In other words, it is
important to determine the thermal-design impact of
increasing the sti�ness of the assembly. This question

is answered in Fig. 6. We used three f values such that
the length of the turned end of the L0 ®n is 25, 50 and,
®nally, 75% of the stem length L1. Note the graphic

de®nition of the y fraction on Fig. 5, namely f �
1ÿ yL1=L0: The T-shaped designs of Fig. 2 correspond
to y=0.

The bottom frame of Fig. 6 shows that the overall
conductance of the assembly decreases just slightly
when the ends of the elemental ®ns are bent. The opti-

mized aspect ratios �L1=L0�opt and �t1=t0�opt are also
relatively insensitive to bending the ends. Fig. 7 shows
the optimized ``tau'' geometry that corresponds to the

case of Fig. 4 when y = 0.25. This design satis®es the
unidirectional conduction criterion (14), because
a� ~t0=2�1=2 � 0:18 and a� ~t1=2�1=2 � 0:04:
In conclusion, the optimized geometry and perform-

ance of T-shaped ®ns (Section 3) is ``robust'', and can
be used as a good approximation for tau-shaped con-
structs that ®ll the same frontal area. The bending of

the elemental ®ns introduces a small thermal conduc-
tance penalty, which may be acceptable in view of the
increased sti�ness of the assembly.

5. Narrower tau-shaped assemblies

The tau-shaped con®guration needs an additional

adjustment if several such ®ns are to be mounted on
the same wall (Fig. 8). The uniform-h assumption
makes it necessary to leave a space between the bent

ends of consecutive elemental ®ns. This means that the
rectangle circumscribed to each ``tau'' must be some-
what narrower than the volume (frontal rectangular

area) allocated and kept constant for that assembly.
In Fig. 8 we chose an end-to-end spacing that equals

the spacing between each bent end and its own stem.
Since the horizontal portion of the elemental ®n has

Fig. 7. Optimized tau-shaped constructs for f1=0.086 and a=0.185.

Fig. 8. Narrower tau-shaped constructs mounted on the same

wall.
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the length L0 ÿ yL1, the distance from the L1 stem to
the vertical side of the allocated frontal area is �3=2��
�L0 ÿ yL1�: The frontal area constraint is
A � 2�3=2��L0 ÿ yL1�L1, which assumes the dimension-
less form

3� ~L0 ÿ y ~L1� ~L1 � 1 �17�

Fig. 9 reports the dimensions of the tau-shaped assem-

bly optimized subject to constraint (17). These results

were developed for the same parameters as in Fig. 6:

their purpose is to show that the new constraint (17)

has almost no e�ect on the optimized dimensions of

the assembly.

The same conclusion is drawn from Fig. 7, which

compares the shapes of the tau-shaped assemblies opti-

mized subject to constraints (16) and (17). The conduc-

tion along the narrower tau-shaped ®n shown in Fig. 7

Fig. 9. The optimized geometry and global performance of the narrower tau-shaped assemblies of Fig. 8.
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is unidirectional because a� ~t0=2�1=2 � 0:02 and

a� ~t1=2�1=2 � 0:04, cf. criterion (14).
The two designs of Fig. 7 occupy the same fron-

tal area (the dashed-line rectangle). The two shapes

are nearly the same: the assembly that is narrower
than its allocated area (the lower drawing) has a
shorter and thicker stem than the assembly that

spans the entire width of the area (the upper draw-
ing). The maximized thermal conductances of the
top and bottom designs of Fig. 7 are qÄ1=0.0507

and 0.0526, respectively. These values indicate slight
deterioration in performance relative to the optimized
design with straight elemental ®ns (Table 1, constructal

design).
In conclusion, the optimized assembly is robust not

only with respect to the bending of the tips of the el-

emental (L0) ®ns, but also with respect to the spacing
left between the bent tip and the margin of the frontal
¯ow area allocated to the assembly.

6. Umbrellas of cylindrical ®ns

The preceding material outlined several classes of

results that are generated by a single principle. In this
section we consider an additional example of how the
method may be applied to a new class of ®n-assem-

blies: the ``umbrella'' arrangement shown in Fig. 10. A
cylindrical ®n of length L1 and diameter D1 serves as
stem for the spokes of the wheel formed by n1 elemen-

tal ®ns of length L0 and diameter D0. The case illus-
trated in Fig. 10 for n1=2. The total space allocated to
this construct is the cylinder of radius L0 and height
L1,

V � pL2
0L1 �constant� �18�

The total volume occupied by the ®n material is also
constrained,

Fig. 10. Umbrella-shaped assembly of cylindrical ®ns (n1=2).
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Vf � p
4
D2

1L1 � n1
p
4
D2

0L0 �constant� �19�

The dimensionless alternative to constraint (19) is the

solid volume fraction f1 � Vf=V, which is ®xed.
The objective is to determine the optimal umbrella

geometry such that the global thermal conductance

q1=�T1 ÿ T1� is maximum. The analysis follows the

same steps as in Sections 2 and 3, and is not detailed

here. The role of plate thicknesses (t0, t1) is now played

by the cylinder diameters (D0, D1), and the constraints

(1) and (2) are replaced by Eqs. (18) and (19). The

main step is the continuity of heat current through the

Fig. 11. The optimized geometry and overall thermal conductance of the umbrella construct with n1=2.
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umbrella hub of temperature T0. We report only the
emerging dimensionless groups, and the optimization
results. In place of parameter a of Eq. (5) we now
have

b �
�
4hV 1=3

k

�1=2

�20�

The dimensionless global conductance de®nition (10) is

replaced by

~q1 �
q1

kV 1=3�T1 ÿ T1� �21�

The optimized geometry for the case with two spokes

is summarized in Fig. 11. The geometry is represented
by the aspect ratios �D1=D0�opt and �L1=L0�opt, which
are functions of b and f1. The ratio �D1=D0�opt

Fig. 12. The e�ect of the number of spokes n1 on the optimized geometry and overall thermal conductance of the umbrella con-

struct.
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approaches 1.82 as b drops below 0.1. The ratio
�L1=L0�opt is nearly constant (00.4) when b is of the
order of 1. The twice maximized conductance behaves

as a power law in both b and f1; the data of the top
frame of Fig. 11 are correlated within 12% by an ex-
pression that is quite similar to Eq. (15),

~q1, mm � 0:77b1:47f0:61
1 �22�

The double optimization procedure (Fig. 11) was

repeated for larger n1 values. The results covering the

range 2R n1 R 15 are reported in Fig. 12a for constant

f1 and varying b, and in Fig. 12b for constant b and

varying f1. In both presentations the e�ect of n1 on

the twice-maximized conductance is weak. The ratio

�D1=D0�opt increases as n1 increases, i.e., the spokes

become relatively thinner when they are more numer-

Fig. 12 (continued)
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ous. The ratio �L1=L0�opt is more sensitive to changes
in b (Fig. 12a) than to changes in f1 and n1.
Fig. 13 shows graphically how the number of spokes

in¯uences the optimized geometry. The dashed contour
indicates the allocated space (V ), which is the same in
all three cases. In sum, the optimization of the
umbrella construct leads to concrete geometric aspect

ratios, and the observation that the optimized geome-
try is robust with respect to certain parameters. The
same conclusion was reached in the two earlier cases

treated in this paper.

7. Concluding remarks

The analysis and optimization work presented in

this paper showed that the global thermal conductance
of ®n assemblies can be maximized by geometric op-
timization subject to total volume and ®n material con-

straints. The optimization and the constraints deliver
every geometric feature of the assembly, e.g., Fig. 4
(bottom) and Fig. 7. Noteworthy is the emergence of

an optimal external shape for the assembly (e.g., Fig.
2, top) and an internal optimal ratio of plate-®n thick-
nesses (e.g., Fig. 2, middle).

Three assembly con®gurations have been optimized.

The simplest is the T-shaped assembly of plate ®ns, for

which we showed that the constructal optimization can

lead to substantial increases in global conductance

relative to current optimal designs that ®ll the same

volume and use the same amount of ®n material (e.g.,

Table 1). Tau-shaped assemblies ®ll their allotted space

better, while exhibiting only a slight decrease in global

conductance relative to their T-shaped counterparts

(Fig. 6). The paper reports the results for the opti-

mized geometries of all T-shaped, tau-shaped and

umbrella-shaped assemblies that conform to the uni-

directional heat conduction model. The range covered

by these systems is marked by the dimensionless par-

ameters f1 and a or b. These results may be re®ned in

future studies, for example, by relaxing the classical

constant-h assumption.

One useful aspect of the optimized geometries is that

certain architectural features are relatively ``robust'',

i.e., insensitive to changes in design parameters. Com-

pare, for example, the two pro®les drawn in Fig. 7,

which show that the optimized thinner ®ns are almost

the same, regardless of whether they span the entire

width of the space allocated to them. Compare also

Eqs. (15) and (22). Another example is provided

Fig. 13. Examples of optimized umbrella constructs with f1=0.01 and b=0.8.
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by the optimized external and internal ratios
��L1=L0�opt, �t1=t0�opt; Fig. 6), which do not vary signi®-

cantly with the lengths of the bent ends of the thinner
®ns. The feature of robustness was also revealed by the
optimized architectures of other tree paths and duct

cross-sections produced by the constructal method [4].
The robustness of some of the results, i.e., their

weak dependence on some of the constrained design

parameters, is also related to the idealizations that
have been adopted. An important idealization is the
assumption that the heat transfer coe�cient is indepen-

dent of the free ¯ow area shape. Future studies may
address the e�ect of relaxing this assumption on T-
assembly architecture. An example of how one may
proceed is given in Refs. [13,14], where the heat trans-

fer coe�cient was linked to (i.e., derived from) the op-
timal spacing between adjacent parallel plates. The
choice is based on the well known principle of optimiz-

ing internal spacings for both forced convection and
natural convection [15].
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